teem photonics™

HNx High Peak Power Amplified Microchip Series

Key features

- 1064nm and 532nm
- Ultra-short pulses down to 500ps@70kHz
- Peak power over 100kW
- Excellent beam quality TEM00, M²<1.1</p>
- Efficient, air-cooled
- Sealed package, extremely long life

The PicoSpark[™] series combines multi-watt output level with high repetition rate and exceptional pulse characteristics to provide the best price/quality ratio for micromachining application.

Passively Q-Switched (PQS) microchip laser technology and fiber amplification are brought together, delivering pulses with hundreds of kilowatt peak power and hundreds of gigawatt per square centimeter power density in a sealed and air-cooled compact package.

This Master Oscillator Fiber Amplifier (MOFA) architecture notably offers a full control over the pulse energy (or peak power) while leaving unchanged the pulse width and pulse shape.

Applications

- Micromachining
 - Selective ablation of µm to nm scale layers
 - Edge isolation
 - Cutting from PCB to PCD with no heat effect
- Instrumentation
 - Laser Induced Breakdown Spectroscopy
 - Raman spectroscopy
 - Supercontinuum generation
 - \circ Ranging
 - $\circ \quad \text{Differential absorption LIDAR}$
- Biophotonics
 - Dense tissue ablation
 - Tattoo removal
 - Micro-surgery

teem photonics™

Technical specifications:

	HNP-70F-100 ⁽⁶⁾	HNG-70F-100
Wavelength	1064nm	532nm
Repetition Rate	>70kHz	>70kHz
Constant Pulse width range (FWHM) ⁽¹⁾	<0.6ns	<0.55ns
Output power ⁽²⁾	>6W	>4W
Output energy	>80µJ	>50µJ
Peak Power	>130kW	>100kW
Short term(10min) power stability ⁽³⁾	<±3%	<±3%
Long term (6 hrs) power stability ⁽³⁾	<±5%	<±5%
Beam profile	Gaussian TEM00	Gaussian TEM00
Beam diameter at output	3mm±0.5mm	0.65mm±0.2mm
Full angle divergence @1/e² Horizontal Vertical	<2 mrad <2 mrad	3±1 mrad 3±1 mrad
M ²⁽⁴⁾	<1.2	<1.2
Beam ellipticity ⁽⁵⁾	<1.20	<1.22
Polarization	Linear PER>20dB	Linear PER>20dB
Energy control function	RS232, Analog 0-5V	RS232, Analog 0-5V
Gating function	TTL 0-5V	TTL 0-5V
Options included	S	S

Notes				
(1)	Measured with 1Ghz photodiode and 1GHz/10GS/s oscilloscope.			
(2)	(2) Measurement performed with an OPHIR thermal power sensor (OPHIR 3A-FS-SH)			
(3) For temperature variation $< \pm 3^{\circ}$ C and $< 3^{\circ}$ C/hour, stability is measured with calorimeter - detector band [DC, 2Hz]				
(4)	(4) Mean average value M = $\sqrt{(XY)}$, X and Y being respectively the major and minor axis of the ellipse			
(5)	(5) Beam ellipticity is calculated as the ratio of the main axis far field divergence			
(6)	(6) Contact factory for availability			
All information contained herein is believed to be accurate and is subject to change without notice. Teem Photonics may not be held liable for its use. Teem Photonics, its subsidiaries and affiliates, reserve the right to modify or withdraw, at any time and without any notice, specifications, product design, product component. Some options may not be available for all products. Please contact Teem Photonics for details. January 17				

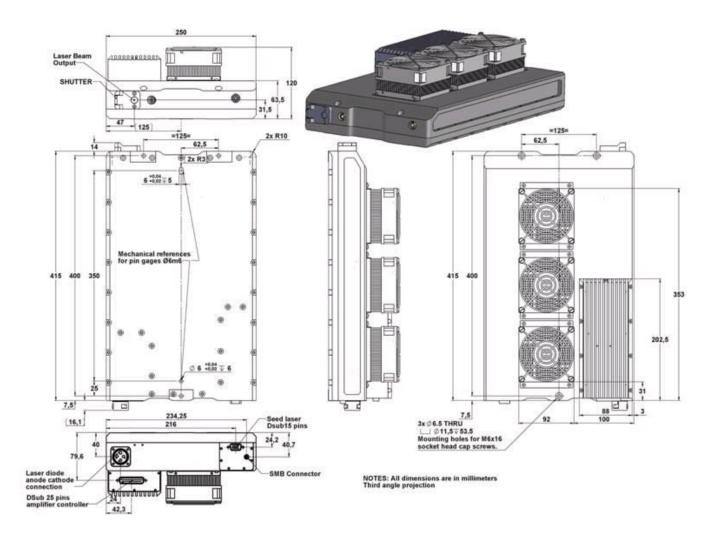
For your application, find your pulsed laser solution

teem photonics™

Complementary information & options:

Environment Parameters		
Operating Temperature Range	15-30°C	
Maximum Power Consumption	<600W	
Storage Temperature	0-50°C	
Shock of 11ms according to IEC 68-2- 27, non operating	25g	
Vibration 5Hz to 500Hz sinusoïdal according to IEC 68-2-6	2g	

Certification		
Laser classification according to IEC 60825-1:2007	4	
CDRH compliance	Yes	
ROHs	Yes	

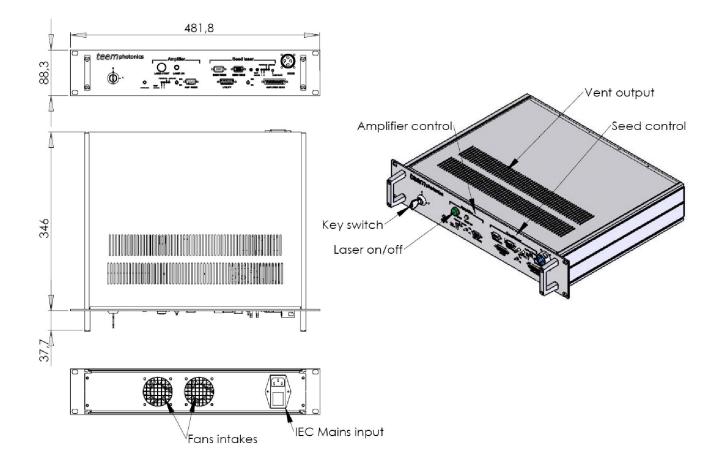

Package		
Laser Head dimensions, LxWxH ⁽⁷⁾	429x250x120mm	
Laser Head weight	9kgs	
Cable length between head and controller	2m	
Controller dimensions, LxWxH	483x390x88mm	
Controller weight	10kgs	

Options	
Synchronization output (S)	TTL compatible output signal for synchronization/monitoring

For your application, find your pulsed laser solution

teem photonics™

CDRH Laser Head Mechanical Drawings



All information contained herein is believed to be accurate and is subject to change without notice. Teem Photonics may not be held liable for its use. Teem Photonics, its subsidiaries and affiliates, reserve the right to modify or withdraw, at any time and without any notice, specifications, product design, product component. Some options may not be available for all products. Please contact Teem Photonics for details. January 17

HNx series - Page 4 of 5 www.teemphotonics.com For your application, find your pulsed laser solution

teem photonics™

CDRH Controller Mechanical Drawings

